2016年考研数学备考复习全程规划(二)

发布时间:2019-04-22  栏目:教育  评论:0 Comments

  如果你读到了这篇文章,那说明你正在关注2016年考研[微博]。处于备考状态的你正如一个战士,而你的对手就是这场考试。那么你如何能有效或者漂亮地打赢这场战斗呢?兵法有云:知己知彼,方能百战不殆。本文试图解决如下三个问题:知彼——把握考研最新考情,知己——认识自己的能力和考研要求的差距,以及由此产生的应对之法——复习规划。跨考教育[微博]数学教研室刘纬宇老师为大家一一分析。

  考研数学从2009年数3和数4合并了以后,没有丝毫的变化。今年考研的难度,比较2010年还是比较简单的。考研的难度可以从两个角度解读:第一,平均分数,2011年刚出的考试分析中提到,数1的平均分数是77分,数2的平均分数是81分,数3的平均分数是83分,这个分数相对于往年都有提高。另一个角度分析考试难度有一个指标叫难度系数,今年的难度系数在0.53左右,相对来说变得简单了。考研会出现适当的波动,2010年难了,2011年适当简单一点,
2012难度就会有适当的增加。

  大学数学VS考研数学

  现在对于考生来说已经进入9月份了,按照9月份强化阶段的规划,给大家从宏观上把控一下。9月份到10月份,或10月中上旬,要求同学们把复习全书做完,而且不仅是做完,争取每个题都会。复习一到两遍,熟练掌握。到了10月下旬,包括11月份,历年的真题要做完,并能熟练掌握。12月份一个月的时间,在不断复习前面的内容的基础上,同学们通过练习模拟题查漏补缺,要求至少练五套以上。到了1月份,只剩下一周的时间,这时候就不要太做题了,希望同学们把之前做的真题、模拟题复习一下。

  了解了最新考情后,我们把目光移到自己身上,看看自己现有的能力与考研数学的要求有多大的差距。

  到了9月份强化阶段,同学们基础阶段已经过去了,课本基本的定义、性质、定理、方法都应该掌握好了。9月份强化阶段重点的工作是干什么呢?重难点,围绕考研数学历年的重难点熟练掌握。下面以高等数学为例,我把每章每节重点难点以及历年的考查情况跟大家详细说一下。

  两道常见的大学课后习题是这样的:

  高等数学第一章求极限,极限的计算方法,这个地方可以说是每年必考,不管是大题小题。比方2011年考的大题,2010年考小题。

  (1)求某二元函数的偏导数;

  第二章重点内容是导数的计算和应用,以及微分中值定理的应用。尤其是导数的应用特别重要。2011年考了两个大题,一个题是考利用导数研究方程的根,另一个是用导数证明不等式。2010年也考查了导数应用,考大家用导数研究单调性与极值。

  (2)求解某二阶常系数非齐次线性微分方程。

  第三章最重要的是积分的计算和应用,今年数1数2的同学考了一个大题,考积分的应用来求做功。重点说一下关于数2的同学,积分的物理应用特别重要。数1、数2、数3共同掌握的是积分几何应用。

  这两道题考查的是单一的知识点。而大多数大学数学课上老师也是侧重把每个知识点讲清楚,综合性体现得不多。

  第五章多元微分学重点掌握多元复合函数求偏导、多元隐函数求偏导,多元函数求极值、条件极值与最值。今年考了一个复合函数求偏导的大题,2010年考的是多元隐函数求偏导的小题,2009年考了多元函数求极值。

  我们再看一道有代表性的考研真题:

  第六章多元函数积分学重点说一下,数2、数3的同学不考曲线积分,不考曲面积分,也不考什么格林公式,需要掌握二重积分的计算,这是重点,可以说每年必考。2011年考的是二重积分,数1、数2、数3都考了。数1的同学,除了二重积分掌握以后,三重积分、一类线积分、二类线积分、一类面积分、二类面积分,以及相应的高斯公式、格林公式,斯托克斯公式,这些也是重点。比方2010年考了一个一类面积分的计算。

  (3)给出一个由偏导函数构成的等式,求等式中的函数的解析式。

  第七章非常重要的一个考点是幂级数收敛半径,收敛区间,收敛域的判定,另一个考点就是幂级数展开与求和。2011年考了一个幂级数收敛域的判定。2010年考了一个大题,考的是幂级数的求和。

  考生要完整解出此题,需要完成如下步骤1)求二元函数的偏导数2)化简得出一个二阶常系数非齐次线性微分方程3)解该微分方程。对比上面列举出的大学教材课后习题和考研真题,不难发现:考研数学的基本考点都涵盖在考纲中,在大学课本中都能找到相应题目;一道考研真题可能结合若干个大学数学的知识点,有一定综合性。这提醒考生考研数学复习要重基础。

  第八章微分方程重点两个内容,一阶微分方程,二阶常系数微分方程。这地方可能考大题,可能考小题。今年考了一个小题一阶微分方程求解,2010年考了一个大题,二阶常系数非齐次线性微分方程。

  那么有了基础,是否能轻松上考场呢?我们看下面的真题:

  下面关于线性代数、概率统计。线性代数同学们牢牢把握住矩阵,有关矩阵的秩、逆、初等变换、初等矩阵、分块矩阵。第二章矩阵是基础也是重点。第三章重点把握一下线性表示,线性相关,线性无关,这些特别喜欢出大题,当然也可能出小题。第四章是线性方程组,同学们把握住线性方程组的性质、结构、判定。第五章研究矩阵的特征值,特征向量。这一章同学们把握住三部分内容。第一部分是特征值的定义、性质、求法。第二部分是矩阵的相似对角化。第三部分是实对称矩阵。

  (4)证明某积分不等式。

  第六章重点把握住两部分内容,二次型化为标准形,以及二次型的正定。

  不少考生看到这道题不知如何下手:又含有积分,又是不等式的证明。多数考生比较擅长的是计算,对证明心理没底,而非理科的大学数学课堂上老师讲证明讲得不多。这提醒考生,光把基础打牢还不足以应对考研,还需“方法”层面的训练。关于“基础”和“方法”的区别,再举一例。以考研数学公认的难点——中值定理相关的证明为例。什么叫“打牢基础”呢?中值定理部分有四个定理:费马引理,罗尔定理,拉格朗日定理和柯西定理。这四个定理的内容能完整表述,定理本身会证明,这算是“打牢基础”了。

  整个线性代数以矩阵为核心,把握住其它的章节就可以了。

  那什么叫方法总结到位了呢?拿到一道此类型的题目,一般可以从结论出发进行思考,看待证的式子是含一个中值还是两个。若是一个,再看含不含导数,若含导数,优先考虑罗尔定理,否则考虑闭区间上连续函数的性质(主要是两个定理——介值定理和零点存在定理);若待证的式子含两个中值,则考虑拉格朗日定理和柯西定理。

  概率统计重点注意第三章二维随机变量,第四章期望和方差,把握住这两章概率统计基本上其它的章节也就掌握住了。

  简单地说,“基础”对应“是什么”的问题,“方法”对应“何时用”及“怎么用”的问题。

  以上是对考研数学重点、难点的一个简单分析,希望能够对2012年考研的同学起到一定的作用,用有限的时间取得最好的成绩。最后,跨考教育预祝大家考试成功!(注:请陆续关注跨考教育推出的重难点的精细分解)

美高梅娱乐场网站,  有了“基础”和“方法”,是否能轻松搞定120,130分呢?不能。因为考研数学还有个熟练度的问题。考研数学是限时考试,3个小时搞定23道题,解答题还要写出步骤,不少考生感觉题目做不完。想要熟练,引用卖油翁的那句话“无他,唯手熟尔”。

分享到:

  简而言之,大学数学侧重“基础”,而考研数学有三方面要求“基础”、“方法”和“熟练”。

    更多信息请访问:新浪考研频道
考研论坛

留下评论

网站地图xml地图